Publications

# Title ToC Citation DOI
30 Electrochemistry as a surrogate for protein phosphorylation: voltage-controlled assembly of reflectin A1 squid toc S-P Liang, R. Levenson, B. Malady, M.J. Gordon, D.E. Morse, and L. Sepunaru; Journal of the Royal Society Interface202017, 20200774 Link
29 What Can Electrochemistry Tell Us About Individual Enzymes?   C. Davis, S.X. Wang, and L. Sepunaru; Current Opinion in Electrochemistry2020, 25, 100643 Link
28 A Living Biotic-Abiotic Composite that can Switch Function Between Current Generation and Electrochemical Energy Storage Y. Su, S.R. McCuskey, D. Leifert, A.S. Moreland, L. Zhou, L.C. Llanes, R.J. Vazquez, L. Sepunaru, G.C. Bazan; Advanced Functional Materials2020, Article 2007351. Link
27 Electrodeposition of iron phosphide film for hydrogen evolution reaction zhipeng iron phosphide film HER Z. Lu and L. Sepunaru; Electrochimica Acta2020, 363, Article 137167. Link
26 Nanoimpacts at Active and Partially Active Electrodes: Insights and Limitations brian nanoimpacts partialy active electrodes B. Roehrich and L. Sepunaru; Angewandte Chemie International Edition2020. Link
25 Symmetric Phthalocyanine Charge Carrier for Dual Redox Flow Battery/Capacitor Applications symmetric phthalocyanine etc C. Hunt, M. Mattejat, C. Anderson, L. Sepunaru, and G. Menard; ACS Applied Energy Materials2019, 2 (8), pp 5391-5396 Link
24 Does Nitrate Reductase Play a Role in Silver Nanoparticle Synthesis? Evidence for NADPH as the Sole Reducing Agent. toc nadph reductase S. Hietzschold, A. Walter, C. Davis, A.A. Taylor, and L. Sepunaru; ACS Sustainable Chemistry & Engineering, 2019, 7 (9), pp 8070-8076. Link
23 Electrochemistry of Single Enzymes: Fluctuations of Catalase Activities. Abstract Image C. Lin, L. Sepunaru, E. Kätelhön, and R. G. Compton; The Journal of Physical Chemistry Letters, 2018, 9 (11), pp 2814-2817.  Link
22 Understanding single enzyme activity via the nano-impact technique. Graphical abstract: Understanding single enzyme activity via the nano-impact technique C. Lin, E. Kätelhön, L. Sepunaru and R.G Compton; Chemical Science., 20178, pp 6423-6432. Link
# Title Citation DOI
21 Electrochemistry of single droplets of inverse (water-in-oil) emulsions. H. Zhang, L. Sepunaru, S. V Sokolov, E. Laborda, C. Batchelor-McAuley and R.G Compton; PCCP., 201719, pp 15662-15666. Link
20 Oxygen reduction in alkaline solution at glassy carbon surfaces and the role of adsorbed intermediates. H. Zhang, C. Lin, L Sepunaru, C. Batchelor-McAuley and R.G Compton; J electroanal chem., 2017799, pp 53-60. Link
19 Taking cues from nature: Hemoglobin catalysed oxygen reduction. S. V Sokolov, L Sepunaru and R.G Compton; App. Mater. Today., 20177, pp 82-90. Link
18 Catalytic Activity of Catalase-Silica Nanoparticle Hybrids: From Ensemble to Individual Entity Activity. C. Chan, L. Sepunaru, S.V Sokolov, E. Kätelhön and R. G. Compton; Chemical Science., 20178, pp 2303-2308. Link
17 Can Nano-Impacts Detect Single Enzyme Activity? Theoretical Considerations and an Experimental Study of Catalase Impacts. E. Kätelhön, L. Sepunaru, A. A. Karyakin and R. G. Compton; ACS Catal.20166, pp 8313-8320. Link
16 Tuning Electronic Transport via Hepta-Alanine Peptides Junction by Tryptophan. C. Guo, X. Yu, S. Refaely-Abramson, L.Sepunaru, T. Bendikov, I. Pecht, L.Kronik, A. Vilan, M. Sheves, and D. Cahen; PNAS., 2016, 113, pp 10785-10790.  Link
15 Electrochemical Red Blood Cell Counting: One at a Time. L. Sepunaru, S.V. Sokolov, J. Holter, N.P. Young and R.G. Compton; Angew. Chem., 2016128, pp 9920-9923.  Link
14 Catalase-Modified Carbon Electrodes: Persuading Oxygen to Accept Four Electrons Rather Than Two. L. Sepunaru, E. Laborda and R.G Compton; Chemistry – A European Journal., 201622, pp 5904 – 5908. Link
13 Rapid Electrochemical Detection of Single Influenza Viruses Tagged with Silver Nanoparticles. L. Sepunaru, B.J. Plowman, S.V. Sokolov, N.P. Young and R.G. Compton; Chemical Science., 20167, pp 3892-3899.  Link
12 Innovative catalyst design for the oxygen reduction reaction for fuel cells. K. Shimizu L. Sepunaru and R.G. Compton; Chemical Science., 20167, pp 3364-3369. Link
11 Towards Nanometer-Spaced Silicon Contacts to Proteins. I. Schukfeh Muhammed; L Sepunaru; P, Behr, W, Li,; I. Pecht, M. Sheves, D. Cahen, and M. Tornow; Nanotechnology., 201627, pp 115302-115307.  Link
10 Insights into Solid-State Electron Transport through Proteins from Inelastic Tunneling Spectroscopy: The Case of Azurin. X. YuR. Lovrin?i?L. SepunaruW. LiA.VilanI. PechtM. Sheves, and D. CahenACS Nano.20159, pp 9955–9963.  Link
9 Electronic Transport via Homopeptides: The Role of Side Chains and Secondary Structure. L. SepunaruS. Refaely-AbramsonR. Lovrin?i?Y. GavrilovP. Agrawal,Y. LevyL. KronikI.PechtM. Sheves, and D. CahenJ. Am. Chem. Soc.2015137, pp 9617–9626. Link
8 Electrochemical detection of single E. coli bacteria labeled with silver nanoparticles. L. Sepunaru , K. Tschulik , C. Batchelor-McAuley, R. Gavish and R.G. Compton; Biomaterials Science.20153, pp 816-820.  Link
7 Electron Transfer Proteins as Electronic Conductors: Significance of the Metal and Its Binding Site in the Blue Cu Protein Azurin. N. Amdursky, L. Sepunaru, S. Raichlin, I. Pecht, M. Sheves and D. Cahen; Advanced Science., 20152, pp 1400026-140037.  Link
6 Electronic Transport via Proteins. N Amdursky , D Marchak , L. Sepunaru , I. Pecht , M. Sheves , and D. Cahen; Advanced Materials., 201426, pp 7142-7161.  Link
5 Temperature and Force Dependence of NanoScale Electron Transport via the Cu protein Azurin: Conductive Probe Atomic Force Microscopy Measurements. W. Li, L. Sepunaru, N. Amdursky, I. Pecht, M. Sheves, and D. Cahen; ACSNano., 20126, pp 10816–10824. Link
4 Temperature-Dependent Solid-State Electron Transport through Bacteriorhodopsin: Experimental Evidence for Multiple Transport Paths through Proteins. L. Sepunaru, N. Friedman, I. Pecht, M. Sheves and D. Cahen; J. Am. Chem. Soc., 2012, 134, pp 4169–4176. Link
3 Solid-State Electron Transport across Azurin: From a Temperature-Independent to a Temperature-Activated Mechanism. L. Sepunaru, I. Pecht, M. Sheves and D. Cahen; J. Am. Chem. Soc., 2011, 133, pp 2421–2423. Link
2 Proteins as Electronic Materials: Electron Transport through Solid-State Protein Monolayer Junctions. I.Ron, L. Sepunaru, S. Itzhakov, T. Belenkova, N. Friedman, I. Pecht, M. Sheves and D. Cahen; J. Am. Chem. Soc., 2010, 132, pp 4131–4140.  Link
1 Picosecond Electron Transfer from Photosynthetic Reaction Center Protein to GaAs. L. Sepunaru, I. Tsimberov, L. Forolov, C. Carmeli, I, Carmeli and Y. RosenwaksNano Lett.20099, pp 2751-2755. Link

 

Electrodeposition of iron phosphide film for hydrogen evolution reaction