# | Title | ToC | Citation |
---|---|---|---|
52 | Impedimetric Measurement of Exchange Currents and Ionic Diffusion Coefficients in Individual Pseudocapacitive Nanoparticles |
Roehrich, B.; Sepunaru, L. Impedimetric Measurement of Exchange Currents and Ionic Diffusion Coefficients in Individual Pseudocapacitive Nanoparticles. ACS Meas. Sci. Au 2024, acsmeasuresciau.4c00017. DOI: 10.1021/acsmeasuresciau.4c00017 |
|
51 | Effects of Storage Conditions on the Performance of an Electrochemical Aptamer-Based Sensor |
Chung, J.; Billante, A.; Flatebo, C.; Leung, K. K.; Gerson, J.; Emmons, N.; Kippin, T. E.; Sepunaru, L.; Plaxco, K. W. Effects of Storage Conditions on the Performance of an Electrochemical Aptamer-Based Sensor. Sens. Diagn. 2024, 3 (6), 1044–1050. DOI: 10.139/D4SD00066H |
|
50 | Comparison of Voltammetric Methods used in the Interrogation of Electrochemical Aptamer-Based Sensors |
Verrinder, E.; Leung, K. K.; Erdal, M. K.; Sepunaru, L.; Plaxco, K. W. Comparison of Voltammetric Methods Used in the Interrogation of Electrochemical Aptamer-Based Sensors. Sens. Diagn. 2024, 3 (1), 95–103. DOI: 10.1039/D3SD00083D |
|
49 | Near-Temperature-Independent Electron Transport Well beyond Expected Quantum Tunneling Range via Bacteriorhodopsin Multilayers | S. Bera, J.A. Fereiro, S.K. Saxena, D. Chryssikos, K. Mahji, T. Bendikov, L. Sepunaru, D. Ehre, M. Tornow, I. Pecht, A. Vilan, M. Sheves, D. Cahen. J. Am. Chem. Soc., 2023, 145 (45), 24820-24835. DOI: 10.1021/jacs.3c09120 | |
48 |
The Role of Applied Potential on Particle Sizing Precision in Single-Entity Blocking Electrochemistry |
E.Z. Liu, S.R. Popescu, A. Eden, J. Chung, B. Roehrich, L. Sepunaru. Electrochim. Acta., 2023, 143397. DOI: 10.1016/j.electacta.2023.143397 | |
47 | Precise Electrochemical Sizing of Individual Electro-Inactive Particles | J. Chung, K.W. Plaxco, L. Sepunaru. J. Vis. Exp., 2023, (198), e65116. DOI: 10.3791/65116 | |
46 | Voltage-calibrated, finely tunable protein assembly | Y-C. Lin, E. Masquelier, Y. Al Sabeh, L. Sepunaru, M.J. Gordon, D.E. Morse. J. R. Soc. Interface, 2023, 20, 20230183. DOI: 10.1098/rsif.2023.0183 | |
45 | Calibration-Free, Seconds-Resolved In Vivo Molecular Measurements using Fourier-Transform Impedance Spectroscopy Interrogation of Electrochemical Aptamer Sensors | B. Roehrich, K.K. Leung, J. Gerson, T.E. Kippin, K.W. Plaxco, L. Sepunaru. ACS Sens., 2023. DOI: 10.1021/acssensors.3c00632 | |
44 | Rapid Aqueous Ammonia Oxidation to N2 Using a Molecular Ru Electrocatalyst | S.I. Jacob, A. Chakraborty, A. Chamas, R. Bock, L. Sepunaru, G. Ménard. ACS Energy Lett., 2023, 8, 3760-3766. DOI: 10.1021/acsenergylett.3c01133 | |
43 | Side-chain Engineering of Self-Doped Conjugated Polyelectrolytes for Organic Electrochemical Transistors | L. Llanes, A.T. Lill, Y. Wan, S. Chae, A. Yi, T. Nguyen-Dan, H.J. Kim, L. Sepunaru, J. Read de Alaniz, G. Lu, G.C. Bazan, T-Q Nguyen. J. Mater. Chem. C, 2023. DOI: 10.1039/D3TC00355H | |
42 | A new electrochemical method that mimics phosphorylation of the core tau peptide K18 enables kinetic and structural analysis of intermediates and assembly | E. Masquelier, E. Taxon, S-P. Liang, Y. Al Sabeh, L. Sepunaru, M.J. Gordon, D.E. Morse; J. Biol. Chem., 2023, 299 (3), 103011. DOI: 10.1016/j.jbc.2023.103011 | |
41 | Split Biphasic Electrochemical Cells: Toward Membrane-Less Redox Flow Batteries | A. Chakraborty, R. Bock, R. Green, K. Luker, G. Ménard, L. Sepunaru; ACS Appl. Energy Mater., 2022, 6 (2), 605-610. DOI: 10.1021/acsaem.2c03435 | |
40 | Direct Electricity Production from Nematostella and Arthemia's Eggs in a Bio-Electrochemical Cell | Y. Shlosberg, V. Brekhman, T. Lotan, L. Sepunaru. Int. J. Mol. Sci., 2022, 23 (23), 15001. DOI: 10.3390/ijms232315001 | |
39 | Advantages of imprinted polymer electrodes for electrochemical pathogen detection | Y. Shlosberg and L. Sepunaru; Curr. Opin. Electrochem., 2022, 36, 101123. DOI: 10.1016/j.coelec.2022.101123 | |
38 | On the Disinfection of Electrochemical Aptamer-Based Sensors | J. Chung, L. Sepunaru, and K.W. Plaxco; ECS Sensors Plus, 2022. DOI: 10.1149/2754-2726/ac60b2 | |
37 | Low Voltage Voltammetry Probes Proton Dissociation Equlibria of Amino Acids and Peptides | S-P Liang, E. Masquelier, D.E. Morse, M.J. Gordon, and L. Sepunaru; Anal. Chem., 2022. DOI: 10.1021/acs.analchem.1c03371 | |
36 | Reversible Electrochemical Triggering and Optical Interrogation of Polylysine α-helix Formation | E. Masquelier, S-P Liang, L. Sepunaru, D.E. Morse, and M.J. Gordon; Bioelectrochemistry., 2021, 108007. DOI: 10.1016/j.bioelechem.2021.108007 | |
35 | Redox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological CO delivery by CO releasing moieties | J.A. Barrett, Z. Li, J.V. Garcia, E. Wein, D. Zheng, C. Hunt, L. Ngo, L. Sepunaru, A.V. Iretskii, and P.C. Ford; R. Soc. Open Sci., 2021. DOI: 10.1098/rsos.211022 | |
34 | Catalytic Interruption Mitigates Edge Effects in the Characterization of Heterogeneous, Insulating Nanoparticles | Chung, J., Hertler, P., Plaxco, K.W., and Sepunaru, L.; J. Am. Chem. Soc., 2021. DOI: 10.1021/jacs.1c04971 | |
33 | Conjugated Polyelectroytes: Underexplored Materials for Pseudocapacitive Energy Storage |
G. Quek, B. Roehrich, Y. Su, L. Sepunaru, and G.C. Bazan; Adv. Mat., 2021, 2104206. DOI: 10.1002/adma.202104206 |
|
32 | Detection and Characterization of Single Particles by Electrochemical Impedance Spectroscopy | B. Roehrich, E.Z. Liu, R. Silverstein, and L. Sepunaru; J. Phys. Chem. Lett., 2021, 12, 9748-9753. DOI: 10.1021/acs.jpclett.1c02822 | |
31 | Interconvertible Living Radical and Cationic Polymerization using a Dual Photoelectrochemical Catalyst | A. Nikolaev, Z. Lu, A. Chakraborty, L. Sepunaru, and J. Read de Alaniz; J. Am. Chem. Soc., 2021, 143, 31, 12278-12285. DOI: 10.1021/jacs.1c05431 | |
30 | Electrochemistry as a surrogate for protein phosphorylation: voltage-controlled assembly of reflectin A1 | S-P Liang, R. Levenson, B. Malady, M.J. Gordon, D.E. Morse, and L. Sepunaru; Journal of the Royal Society Interface, 2020, 17, 20200774. DOI: 10.1098/rsif.2020.0774 | |
29 | What Can Electrochemistry Tell Us About Individual Enzymes? | C. Davis, S.X. Wang, and L. Sepunaru; Current Opinion in Electrochemistry, 2020, 25, 100643. DOI: 10.1016/j.coelec.2020.100643 | |
28 | A Living Biotic-Abiotic Composite that can Switch Function Between Current Generation and Electrochemical Energy Storage | Y. Su, S.R. McCuskey, D. Leifert, A.S. Moreland, L. Zhou, L.C. Llanes, R.J. Vazquez, L. Sepunaru, and G.C. Bazan; Advanced Functional Materials, 2020, Article 2007351. DOI: 10.1002/adfm.202007351 | |
27 | Electrodeposition of iron phosphide film for hydrogen evolution reaction | Z. Lu and L. Sepunaru; Electrochimica Acta, 2020, 363, Article 137167. DOI: 10.1016/j.electacta.2020.137167 | |
26 | Nanoimpacts at Active and Partially Active Electrodes: Insights and Limitations | B. Roehrich and L. Sepunaru; Angewandte Chemie International Edition, 2020. DOI: 10.1002/anie.202007148 | |
25 | Symmetric Phthalocyanine Charge Carrier for Dual Redox Flow Battery/Capacitor Applications | C. Hunt, M. Mattejat, C. Anderson, L. Sepunaru, and G. Menard; ACS Applied Energy Materials, 2019, 2 (8), pp 5391-5396. DOI: 10.1021/acsaem.9b01317 | |
24 | Does Nitrate Reductase Play a Role in Silver Nanoparticle Synthesis? Evidence for NADPH as the Sole Reducing Agent. | S. Hietzschold, A. Walter, C. Davis, A.A. Taylor, and L. Sepunaru; ACS Sustainable Chemistry & Engineering, 2019, 7 (9), pp 8070-8076. DOI: 10.1021/acssuschemeng.9b00506 | |
23 | Electrochemistry of Single Enzymes: Fluctuations of Catalase Activities. | C. Lin, L. Sepunaru, E. Kätelhön, and R. G. Compton; The Journal of Physical Chemistry Letters, 2018, 9 (11), pp 2814-2817. DOI: 10.1021/acs.jpclett.8b01199 | |
22 | Understanding single enzyme activity via the nano-impact technique. | C. Lin, E. Kätelhön, L. Sepunaru, and R.G Compton; Chemical Science., 2017, 8, pp 6423-6432. DOI: 10.1039/C7SC02084H |
# | Title | Citation |
---|---|---|
21 | Electrochemistry of single droplets of inverse (water-in-oil) emulsions. | H. Zhang, L. Sepunaru, S.V. Sokolov, E. Laborda, C. Batchelor-McAuley, and R.G Compton; PCCP., 2017, 19, 15662-15666. DOI: 10.1039/C7CP03300A |
20 | Oxygen reduction in alkaline solution at glassy carbon surfaces and the role of adsorbed intermediates. | H. Zhang, C. Lin, L. Sepunaru, C. Batchelor-McAuley. and R.G Compton; J Electroanal. Chem., 2017, 799, 53-60. DOI: 10.1016/j.jelechem.2017.05.037 |
19 | Taking cues from nature: Hemoglobin catalysed oxygen reduction. | S.V. Sokolov, L. Sepunaru, and R.G Compton; App. Mater. Today., 2017, 7, 82-90. DOI: 10.1016/j.apmt.2017.01.005 |
18 | Catalytic Activity of Catalase-Silica Nanoparticle Hybrids: From Ensemble to Individual Entity Activity. | C. Chan, L. Sepunaru, S.V Sokolov, E. Kätelhön, and R. G. Compton; Chemical Science., 2017, 8, 2303-2308. DOI: 10.1039/C6SC04921D |
17 | Can Nano-Impacts Detect Single Enzyme Activity? Theoretical Considerations and an Experimental Study of Catalase Impacts. | E. Kätelhön, L. Sepunaru, A. A. Karyakin, and R. G. Compton; ACS Catal., 2016, 6, 8313-8320. DOI: 10.1021/acscatal.6b02633 |
16 | Tuning Electronic Transport via Hepta-Alanine Peptides Junction by Tryptophan. | C. Guo, X. Yu, S. Refaely-Abramson, L.Sepunaru, T. Bendikov, I. Pecht, L. Kronik, A. Vilan, M. Sheves, and D. Cahen; PNAS., 2016, 113, 10785-10790. DOI: 10.1073/pnas.1606779113 |
15 | Electrochemical Red Blood Cell Counting: One at a Time. | L. Sepunaru, S.V. Sokolov, J. Holter, N.P. Young, and R.G. Compton; Angew. Chem., 2016, 128, 9920-9923. DOI: 10.1002/ange.201605310 |
14 | Catalase-Modified Carbon Electrodes: Persuading Oxygen to Accept Four Electrons Rather Than Two. | L. Sepunaru, E. Laborda, and R.G Compton; Chemistry – A European Journal., 2016, 22, 5904 – 5908. DOI: 10.1002/chem.201600692 |
13 | Rapid Electrochemical Detection of Single Influenza Viruses Tagged with Silver Nanoparticles. | L. Sepunaru, B.J. Plowman, S.V. Sokolov, N.P. Young, and R.G. Compton; Chemical Science., 2016, 7, 3892-3899. DOI: 10.1039/C6SC00412A |
12 | Innovative catalyst design for the oxygen reduction reaction for fuel cells. | K. Shimizu, L. Sepunaru, and R.G. Compton; Chemical Science., 2016, 7, 3364-3369. DOI: 10.1039/C6SC00139D |
11 | Towards Nanometer-Spaced Silicon Contacts to Proteins. | I. Schukfeh Muhammed; L. Sepunaru, P. Behr, W. Li, I. Pecht, M. Sheves, D. Cahen, and M. Tornow; Nanotechnology., 2016, 27, 115302-115307. DOI: |
10 | Insights into Solid-State Electron Transport through Proteins from Inelastic Tunneling Spectroscopy: The Case of Azurin. | X. Yu, R. Lovrin?i?, L. Sepunaru, W. Li, A.Vilan, I. Pecht, M. Sheves, and D. Cahen; ACS Nano., 2015, 9, 9955–9963. DOI: 10.1088/0957-4484/27/11/115302 |
9 | Electronic Transport via Homopeptides: The Role of Side Chains and Secondary Structure. | L. Sepunaru, S. Refaely-Abramson, R. Lovrinčić, Y. Gavrilov, P. Agrawal,Y. Levy, L. Kronik, I. Pecht, M. Sheves, and D. Cahen; J. Am. Chem. Soc., 2015, 137, 9617–9626. DOI: 10.1021/jacs.5b03933 |
8 | Electrochemical detection of single E. coli bacteria labeled with silver nanoparticles. | L. Sepunaru , K. Tschulik , C. Batchelor-McAuley, R. Gavish, and R.G. Compton; Biomater. Sci., 2015, 3, 816-820. DOI: 10.1039/C5BM00114E |
7 | Electron Transfer Proteins as Electronic Conductors: Significance of the Metal and Its Binding Site in the Blue Cu Protein Azurin. | N. Amdursky, L. Sepunaru, S. Raichlin, I. Pecht, M. Sheves, and D. Cahen; Advanced Science., 2015, 2, 1400026-140037. DOI: 10.1002/advs.201400026 |
6 | Electronic Transport via Proteins. | N Amdursky , D Marchak , L. Sepunaru , I. Pecht , M. Sheves, and D. Cahen; Advanced Materials., 2014, 26, 7142-7161. DOI: 10.1002/adma.201402304 |
5 | Temperature and Force Dependence of NanoScale Electron Transport via the Cu protein Azurin: Conductive Probe Atomic Force Microscopy Measurements. | W. Li, L. Sepunaru, N. Amdursky, I. Pecht, M. Sheves, and D. Cahen; ACSNano., 2012, 6, 10816–10824. DOI: 10.1021/nn3041705 |
4 | Temperature-Dependent Solid-State Electron Transport through Bacteriorhodopsin: Experimental Evidence for Multiple Transport Paths through Proteins. | L. Sepunaru, N. Friedman, I. Pecht, M. Sheves, and D. Cahen; J. Am. Chem. Soc., 2012, 134, 4169–4176. DOI: 10.1021/ja2097139 |
3 | Solid-State Electron Transport across Azurin: From a Temperature-Independent to a Temperature-Activated Mechanism. | L. Sepunaru, I. Pecht, M. Sheves, and D. Cahen; J. Am. Chem. Soc., 2011, 133, 2421–2423. DOI: 10.1021/ja109989f |
2 | Proteins as Electronic Materials: Electron Transport through Solid-State Protein Monolayer Junctions. | I. Ron, L. Sepunaru, S. Itzhakov, T. Belenkova, N. Friedman, I. Pecht, M. Sheves, and D. Cahen; J. Am. Chem. Soc., 2010, 132, 4131–4140. DOI: 10.1021/ja907328r |
1 | Picosecond Electron Transfer from Photosynthetic Reaction Center Protein to GaAs. | L. Sepunaru, I. Tsimberov, L. Forolov, C. Carmeli, I, Carmeli and Y. Rosenwaks; Nano Lett., 2009, 9, 2751-2755. DOI: 10.1021/nl901262h |