Publications

# Title ToC Citation
52 Impedimetric Measurement of Exchange Currents and Ionic Diffusion Coefficients in Individual Pseudocapacitive Nanoparticles

Roehrich, B.; Sepunaru, L. Impedimetric Measurement of Exchange Currents and Ionic Diffusion Coefficients in Individual Pseudocapacitive Nanoparticles. ACS Meas. Sci. Au 2024, acsmeasuresciau.4c00017. DOI: 10.1021/acsmeasuresciau.4c00017

51 Effects of Storage Conditions on the Performance of an Electrochemical Aptamer-Based Sensor

Chung, J.; Billante, A.; Flatebo, C.; Leung, K. K.; Gerson, J.; Emmons, N.; Kippin, T. E.; Sepunaru, L.; Plaxco, K. W. Effects of Storage Conditions on the Performance of an Electrochemical Aptamer-Based Sensor. Sens. Diagn. 2024, 3 (6), 1044–1050. DOI: 10.139/D4SD00066H

50 Comparison of Voltammetric Methods used in the Interrogation of Electrochemical Aptamer-Based Sensors

Verrinder, E.; Leung, K. K.; Erdal, M. K.; Sepunaru, L.; Plaxco, K. W. Comparison of Voltammetric Methods Used in the Interrogation of Electrochemical Aptamer-Based Sensors. Sens. Diagn. 2024, 3 (1), 95–103. DOI: 10.1039/D3SD00083D

49 Near-Temperature-Independent Electron Transport Well beyond Expected Quantum Tunneling Range via Bacteriorhodopsin Multilayers S. Bera, J.A. Fereiro, S.K. Saxena, D. Chryssikos, K. Mahji, T. Bendikov, L. Sepunaru, D. Ehre, M. Tornow, I. Pecht, A. Vilan, M. Sheves, D. Cahen. J. Am. Chem. Soc., 2023, 145 (45), 24820-24835. DOI: 10.1021/jacs.3c09120
48

The Role of Applied Potential on Particle Sizing Precision in Single-Entity Blocking Electrochemistry

insulating applied potential E.Z. Liu, S.R. Popescu, A. Eden, J. Chung, B. Roehrich, L. Sepunaru. Electrochim. Acta., 2023, 143397. DOI: 10.1016/j.electacta.2023.143397
47 Precise Electrochemical Sizing of Individual Electro-Inactive Particles   J. Chung, K.W. Plaxco, L. Sepunaru. J. Vis. Exp., 2023, (198), e65116. DOI: 10.3791/65116
46 Voltage-calibrated, finely tunable protein assembly voltage protein assembly Y-C. Lin, E. Masquelier, Y. Al Sabeh, L. Sepunaru, M.J. Gordon, D.E. Morse. J. R. Soc. Interface, 2023, 20, 20230183. DOI: 10.1098/rsif.2023.0183
45 Calibration-Free, Seconds-Resolved In Vivo Molecular Measurements using Fourier-Transform Impedance Spectroscopy Interrogation of Electrochemical Aptamer Sensors TOC_ft_EIS_20230811 B. Roehrich, K.K. Leung, J. Gerson, T.E. Kippin, K.W. Plaxco, L. Sepunaru. ACS Sens., 2023. DOI: 10.1021/acssensors.3c00632
44 Rapid Aqueous Ammonia Oxidation to N2 Using a Molecular Ru Electrocatalyst RuBdaTOC S.I. Jacob, A. Chakraborty, A. Chamas, R. Bock, L. Sepunaru, G. Ménard. ACS Energy Lett., 2023, 8, 3760-3766. DOI: 10.1021/acsenergylett.3c01133
43 Side-chain Engineering of Self-Doped Conjugated Polyelectrolytes for Organic Electrochemical Transistors side-chain L. Llanes, A.T. Lill, Y. Wan, S. Chae, A. Yi, T. Nguyen-Dan, H.J. Kim, L. Sepunaru, J. Read de Alaniz, G. Lu, G.C. Bazan, T-Q Nguyen. J. Mater. Chem. C, 2023. DOI: 10.1039/D3TC00355H
42 A new electrochemical method that mimics phosphorylation of the core tau peptide K18 enables kinetic and structural analysis of intermediates and assembly electrophosphorylation E. Masquelier, E. Taxon, S-P. Liang, Y. Al Sabeh, L. Sepunaru, M.J. Gordon, D.E. Morse; J. Biol. Chem.2023299 (3), 103011. DOI: 10.1016/j.jbc.2023.103011
41 Split Biphasic Electrochemical Cells: Toward Membrane-Less Redox Flow Batteries membraneless redox flow battery A. Chakraborty, R. Bock, R. Green, K. Luker, G. Ménard, L. Sepunaru; ACS Appl. Energy Mater.20226 (2), 605-610. DOI: 10.1021/acsaem.2c03435
40 Direct Electricity Production from Nematostella and Arthemia's Eggs in a Bio-Electrochemical Cell nematostella Y. Shlosberg, V. Brekhman, T. Lotan, L. Sepunaru. Int. J. Mol. Sci.202223 (23), 15001. DOI: 10.3390/ijms232315001
39 Advantages of imprinted polymer electrodes for electrochemical pathogen detection matrix Y. Shlosberg and L. Sepunaru; Curr. Opin. Electrochem.2022, 36, 101123. DOI: 10.1016/j.coelec.2022.101123
38 On the Disinfection of Electrochemical Aptamer-Based Sensors disinfection toc J. Chung, L. Sepunaru, and K.W. Plaxco; ECS Sensors Plus2022. DOI: 10.1149/2754-2726/ac60b2
37 Low Voltage Voltammetry Probes Proton Dissociation Equlibria of Amino Acids and Peptides low voltage toc S-P Liang, E. Masquelier, D.E. Morse, M.J. Gordon, and L. Sepunaru; Anal. Chem.2022. DOI: 10.1021/acs.analchem.1c03371
36 Reversible Electrochemical Triggering and Optical Interrogation of Polylysine α-helix Formation bias reflectin E. Masquelier, S-P Liang, L. Sepunaru, D.E. Morse, and M.J. Gordon; Bioelectrochemistry., 2021, 108007. DOI: 10.1016/j.bioelechem.2021.108007
35 Redox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological CO delivery by CO releasing moieties manganese J.A. Barrett, Z. Li, J.V. Garcia, E. Wein, D. Zheng, C. Hunt, L. Ngo, L. Sepunaru, A.V. Iretskii, and P.C. Ford; R. Soc. Open Sci.2021. DOI: 10.1098/rsos.211022
34 Catalytic Interruption Mitigates Edge Effects in the Characterization of Heterogeneous, Insulating Nanoparticles Blocking nanoparticle edge effects Chung, J., Hertler, P., Plaxco, K.W., and Sepunaru, L.; J. Am. Chem. Soc., 2021. DOI: 10.1021/jacs.1c04971
33 Conjugated Polyelectroytes: Underexplored Materials for Pseudocapacitive Energy Storage backbone

G. Quek, B. Roehrich, Y. Su, L. Sepunaru, and G.C. Bazan; Adv. Mat.2021, 2104206. DOI: 10.1002/adma.202104206

32 Detection and Characterization of Single Particles by Electrochemical Impedance Spectroscopy detect characterize single particles EIS B. Roehrich, E.Z. Liu, R. Silverstein, and L. Sepunaru; J. Phys. Chem. Lett.202112, 9748-9753. DOI: 10.1021/acs.jpclett.1c02822
31 Interconvertible Living Radical and Cationic Polymerization using a Dual Photoelectrochemical Catalyst dual stimuli toc A. Nikolaev, Z. Lu, A. Chakraborty, L. Sepunaru, and J. Read de Alaniz; J. Am. Chem. Soc.2021143, 31, 12278-12285. DOI: 10.1021/jacs.1c05431
30 Electrochemistry as a surrogate for protein phosphorylation: voltage-controlled assembly of reflectin A1 squid toc S-P Liang, R. Levenson, B. Malady, M.J. Gordon, D.E. Morse, and L. Sepunaru; Journal of the Royal Society Interface202017, 20200774. DOI: 10.1098/rsif.2020.0774
29 What Can Electrochemistry Tell Us About Individual Enzymes?   C. Davis, S.X. Wang, and L. Sepunaru; Current Opinion in Electrochemistry2020, 25, 100643. DOI: 10.1016/j.coelec.2020.100643
28 A Living Biotic-Abiotic Composite that can Switch Function Between Current Generation and Electrochemical Energy Storage pseudocapacitor Y. Su, S.R. McCuskey, D. Leifert, A.S. Moreland, L. Zhou, L.C. Llanes, R.J. Vazquez, L. Sepunaru, and G.C. Bazan; Advanced Functional Materials2020, Article 2007351. DOI: 10.1002/adfm.202007351
27 Electrodeposition of iron phosphide film for hydrogen evolution reaction zhipeng iron phosphide film HER Z. Lu and L. Sepunaru; Electrochimica Acta2020, 363, Article 137167. DOI: 10.1016/j.electacta.2020.137167
26 Nanoimpacts at Active and Partially Active Electrodes: Insights and Limitations brian nanoimpacts partialy active electrodes B. Roehrich and L. Sepunaru; Angewandte Chemie International Edition2020. DOI: 10.1002/anie.202007148
25 Symmetric Phthalocyanine Charge Carrier for Dual Redox Flow Battery/Capacitor Applications symmetric phthalocyanine etc C. Hunt, M. Mattejat, C. Anderson, L. Sepunaru, and G. Menard; ACS Applied Energy Materials2019, 2 (8), pp 5391-5396. DOI: 10.1021/acsaem.9b01317
24 Does Nitrate Reductase Play a Role in Silver Nanoparticle Synthesis? Evidence for NADPH as the Sole Reducing Agent. toc nadph reductase S. Hietzschold, A. Walter, C. Davis, A.A. Taylor, and L. Sepunaru; ACS Sustainable Chemistry & Engineering, 2019, 7 (9), pp 8070-8076. DOI: 10.1021/acssuschemeng.9b00506
23 Electrochemistry of Single Enzymes: Fluctuations of Catalase Activities. Abstract Image C. Lin, L. Sepunaru, E. Kätelhön, and R. G. Compton; The Journal of Physical Chemistry Letters, 2018, 9 (11), pp 2814-2817. DOI: 10.1021/acs.jpclett.8b01199
22 Understanding single enzyme activity via the nano-impact technique. Graphical abstract: Understanding single enzyme activity via the nano-impact technique C. Lin, E. Kätelhön, L. Sepunaru, and R.G Compton; Chemical Science., 20178, pp 6423-6432. DOI: 10.1039/C7SC02084H
# Title Citation
21 Electrochemistry of single droplets of inverse (water-in-oil) emulsions. H. Zhang, L. Sepunaru, S.V. Sokolov, E. Laborda, C. Batchelor-McAuley, and R.G Compton; PCCP., 201719, 15662-15666. DOI: 10.1039/C7CP03300A
20 Oxygen reduction in alkaline solution at glassy carbon surfaces and the role of adsorbed intermediates. H. Zhang, C. Lin, L. Sepunaru, C. Batchelor-McAuley. and R.G Compton; J Electroanal. Chem., 2017799, 53-60. DOI: 10.1016/j.jelechem.2017.05.037
19 Taking cues from nature: Hemoglobin catalysed oxygen reduction. S.V. Sokolov, L. Sepunaru, and R.G Compton; App. Mater. Today., 20177, 82-90. DOI: 10.1016/j.apmt.2017.01.005
18 Catalytic Activity of Catalase-Silica Nanoparticle Hybrids: From Ensemble to Individual Entity Activity. C. Chan, L. Sepunaru, S.V Sokolov, E. Kätelhön, and R. G. Compton; Chemical Science., 20178, 2303-2308. DOI: 10.1039/C6SC04921D
17 Can Nano-Impacts Detect Single Enzyme Activity? Theoretical Considerations and an Experimental Study of Catalase Impacts. E. Kätelhön, L. Sepunaru, A. A. Karyakin, and R. G. Compton; ACS Catal.20166, 8313-8320DOI: 10.1021/acscatal.6b02633
16 Tuning Electronic Transport via Hepta-Alanine Peptides Junction by Tryptophan. C. Guo, X. Yu, S. Refaely-Abramson, L.Sepunaru, T. Bendikov, I. Pecht, L. Kronik, A. Vilan, M. Sheves, and D. Cahen; PNAS., 2016, 113, 10785-10790. DOI: 10.1073/pnas.1606779113
15 Electrochemical Red Blood Cell Counting: One at a Time. L. Sepunaru, S.V. Sokolov, J. Holter, N.P. Young, and R.G. Compton; Angew. Chem., 2016128, 9920-9923. DOI: 10.1002/ange.201605310
14 Catalase-Modified Carbon Electrodes: Persuading Oxygen to Accept Four Electrons Rather Than Two. L. Sepunaru, E. Laborda, and R.G Compton; Chemistry – A European Journal., 201622, 5904 – 5908. DOI: 10.1002/chem.201600692
13 Rapid Electrochemical Detection of Single Influenza Viruses Tagged with Silver Nanoparticles. L. Sepunaru, B.J. Plowman, S.V. Sokolov, N.P. Young, and R.G. Compton; Chemical Science., 20167, 3892-3899. DOI: 10.1039/C6SC00412A
12 Innovative catalyst design for the oxygen reduction reaction for fuel cells. K. Shimizu, L. Sepunaru, and R.G. Compton; Chemical Science., 20167, 3364-3369. DOI: 10.1039/C6SC00139D
11 Towards Nanometer-Spaced Silicon Contacts to Proteins. I. Schukfeh Muhammed; L. Sepunaru, P. Behr, W. Li, I. Pecht, M. Sheves, D. Cahen, and M. Tornow; Nanotechnology., 201627, 115302-115307. DOI: 
10 Insights into Solid-State Electron Transport through Proteins from Inelastic Tunneling Spectroscopy: The Case of Azurin. X. YuR. Lovrin?i?L. SepunaruW. LiA.VilanI. PechtM. Sheves, and D. CahenACS Nano.20159, 9955–9963. DOI: 10.1088/0957-4484/27/11/115302
9 Electronic Transport via Homopeptides: The Role of Side Chains and Secondary Structure. L. SepunaruS. Refaely-AbramsonR. LovrinčićY. GavrilovP. Agrawal,Y. LevyL. KronikI. PechtM. Sheves, and D. CahenJ. Am. Chem. Soc.2015137, 9617–9626. DOI: 10.1021/jacs.5b03933
8 Electrochemical detection of single E. coli bacteria labeled with silver nanoparticles. L. Sepunaru , K. Tschulik , C. Batchelor-McAuley, R. Gavish, and R.G. Compton; Biomater. Sci.20153, 816-820. DOI: 10.1039/C5BM00114E
7 Electron Transfer Proteins as Electronic Conductors: Significance of the Metal and Its Binding Site in the Blue Cu Protein Azurin. N. Amdursky, L. Sepunaru, S. Raichlin, I. Pecht, M. Sheves, and D. Cahen; Advanced Science., 20152, 1400026-140037. DOI: 10.1002/advs.201400026
6 Electronic Transport via Proteins. N Amdursky , D Marchak , L. Sepunaru , I. Pecht , M. Sheves, and D. Cahen; Advanced Materials., 201426, 7142-7161. DOI: 10.1002/adma.201402304
5 Temperature and Force Dependence of NanoScale Electron Transport via the Cu protein Azurin: Conductive Probe Atomic Force Microscopy Measurements. W. Li, L. Sepunaru, N. Amdursky, I. Pecht, M. Sheves, and D. Cahen; ACSNano., 20126, 10816–10824. DOI: 10.1021/nn3041705
4 Temperature-Dependent Solid-State Electron Transport through Bacteriorhodopsin: Experimental Evidence for Multiple Transport Paths through Proteins. L. Sepunaru, N. Friedman, I. Pecht, M. Sheves, and D. Cahen; J. Am. Chem. Soc., 2012, 134, 4169–4176. DOI: 10.1021/ja2097139
3 Solid-State Electron Transport across Azurin: From a Temperature-Independent to a Temperature-Activated Mechanism. L. Sepunaru, I. Pecht, M. Sheves, and D. Cahen; J. Am. Chem. Soc., 2011, 133, 2421–2423. DOI: 10.1021/ja109989f
2 Proteins as Electronic Materials: Electron Transport through Solid-State Protein Monolayer Junctions. I. Ron, L. Sepunaru, S. Itzhakov, T. Belenkova, N. Friedman, I. Pecht, M. Sheves, and D. Cahen; J. Am. Chem. Soc., 2010, 132, 4131–4140. DOI: 10.1021/ja907328r
1 Picosecond Electron Transfer from Photosynthetic Reaction Center Protein to GaAs. L. Sepunaru, I. Tsimberov, L. Forolov, C. Carmeli, I, Carmeli and Y. RosenwaksNano Lett.20099, 2751-2755. DOI: 10.1021/nl901262h